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Kinetics of heterogeneous nucleation in supersaturated vapor: Fundamental limits
to neutral particle detection revisited

Robert McGraw, Jian Wang, and Chongai Kuang

Environmental Sciences Department, Atmospheric Sciences Division, Brookhaven
National Laboratory, 11973, New York, USA

Abstract

We examine the nucleated (with barrier) activation of perfectly wetting (zero

contact angle) particles ranging from essentially bulk size down to approximately one

nanometer mass diameter. While similar studies trace back to the pioneering work of

Fletcher [1958], we present here a novel approach to the analysis based on general area

constructions that enable key thermodynamic properties including surface and bulk

contributions to nucleation work to be interpreted geometrically with reference to the

Kelvin curve. The kinetics of activation is described in more detail in terms of the mean

first passage time (MFPT) for barrier crossing. MFPT theory and benchmark calculations

are used to develop and test a new approximate but simpler to use analytic expression for

barrier crossing rate. The present study is motivated by recent condensation particle

counter (CPC) studies that appear to finally establish the long-predicted detection of

“sub-Kelvin” particles in the nano-size regime. Corresponding states thermodynamic and

kinetic scaling approaches are used to facilitate the correlation and selection of optimal

CPC working fluids and operating conditions based on a new metric for heterogeneous

nucleation, the signal to noise ratio, and on physical and chemical properties.

Keywords:   nucleation kinetics, heterogeneous nucleation, barrier crossing, neutral

particle detection, mean first passage time
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1. Introduction

Striking advance has been made over the past several years in condensation particle

counter (CPC) development, enabling particles in the sub-3 nm diameter range

approaching the size of molecular clusters to be routinely detected in the laboratory

[Winkler et al. 2008; Iida et al., 2009; Sipila et al., 2009; Vanhanen et al. 2010] and in the

atmosphere [Jiang et al., 2010]. This instrumental breakthrough calls for a re-examination

of the foundations of heterogeneous nucleation theory, still largely based on the

capillarity approximation [Fletcher, 1958], wherein even small clusters are modeled as

bulk-property liquid drops, and simplified kinetics. Fletcher’s theory predicts

heterogeneous nucleation, driven by thermal fluctuations, for the activation of very small

particles (less than about 6 nm) whereas larger particles undergo a barrierless growth

transition at the Kelvin limit. Activation by nucleation below the Kelvin limit is a key

factor in lowering detection size, but only recently has the process been definitively

observed [Winkler et al., 2008]. Another important development has been the screening

of multiple CPC working fluids for optimal detector performance in the sub-3 nm regime

[Magnusson et al., 2003; Iida et al., 2009].

The present study has several objectives beginning with re-examination of the

theory. Any improvement over Fletcher’s analysis is not easily done. One can

contemplate a first-principles molecular simulation, but for an accurate prediction of

nucleation rate this requires more realistic model potentials than are presently available.

Molecular dynamics- and Monte Carlo-based simulations of nucleation are most useful

where precision is enough – e.g. for identifying even small systematic departures from

classical nucleation theory – but such simulations are beyond the scope of the present
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study. Instead, we continue to rely on the capillarity approximation for estimating the

thermodynamic properties needed for the theory while focusing on improving the

kinetics. For this an analysis of the mean first passage times (MFPTs) required for

detailed molecular evaporation/condensation growth steps to reach and exceed the critical

cluster  (consisting of seed particle plus condensate) size is presented. Recent results from

Wedekind et al. [2007] are extended for this purpose to the kinetics of heterogeneous

nucleation. Series expansions for MFPT and nucleation rate are evaluated numerically

and used to derive a simple analytic expression for predicting heterogeneous nucleation

rate. Comparison with the full MFPT calculation shows the approximate formula to be

accurate to within a few percent for nucleation barrier heights in excess of about 5 kT – a

range well covering the region of interest to the present study.

Although physical and chemical properties are derived from the capillarity

approximation, an new approach to the thermodynamic analysis is presented.  As

described in Sec. 2, the approach is based on graphical constructions derived from the

Kelvin curve. There are several reasons for pursuing the new approach: It provides

convenient area constructions for homogeneous and heterogeneous nucleation barriers

and a graphical interpretation even for key kinetic terms, such as the Zeldovich factor,

used in the newly derived rate expression. The method further simplifies the scaling

analysis used to correlate working fluid performance in Sec. 5. Finally the graphical

approach provides a molecular-based framework that recovers results from classical

nucleation theory when the capillarity approximation is used but unlike the conventional

derivation lends itself to a molecular description that can incorporate departures from the

classical theory.
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The new results are discussed in the context of early speculations on the application

of nucleation and growth as a detection tool for single neutral molecules and clusters

[Reiss et al., 1977]. A full analysis of detection capability will require, among other

considerations, going beyond Fletcher theory and viewing heterogeneous nucleation as a

multi-component molecular interaction process in the nano regime. Here we take

preliminary steps in this direction to show that the new formulation provides a molecular

level framework, rooted in mass action and detailed balance, which can be exploited to

great advantage in attempts to go beyond classical nucleation theory.

2. Thermodynamic area constructions

This section develops several graphical constructions for key thermodynamic

properties that include nucleation barrier height, surface work, and barrier shape. The

approach derives from the Kelvin relation, which gives the critical size (generally

consisting of seed plus condensed fluid) as a function of vapor saturation ratio:

ln
( ) / /

/P g

P

v

kT
geq

eq
∞

−





= 











32
3

1 3
1
2 3

1 3π σ . (2.1)

Here g n nseed= +  is the number of condensed solvent molecules, each of molecular

volume v1 , required to fill the total volume, v , consisting of the seed particle volume,

v n vseed seed≡ 1 , plus condensate, v nvcond = 1 . Equivalently, g  is the number of liquid-phase

condensate molecules present in the same-size homogeneous drop, v gv= 1. Note that

nseed  refers not to the number of molecules actually present in the seed, but to a volume-

equivalent number expressed here as the number of molecules of the condensed working

fluid required to fill the volume occupied by the seed. P geq ( )  is the vapor pressure in

(unstable) equilibrium with the drop and Peq
∞  is the bulk equilibrium vapor pressure over a
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flat surface.  The non-dimensional group of physical constants appearing on the right

hand of Eq. 2.1, which will henceforth be written as Ω / //T v kT≡ σ 1
2 3 , is a convenient

scaling parameter used extensively in the sequel. Here σ  is bulk surface tension, v1  is

derived from the bulk density, and Ω = σv k1
2 3/ /  has units of temperature.

Barrier profiles for both heterogeneous and homogeneous nucleation may be

derived using thermodynamic area constructions similar to those introduced recently to

analyze the deliquescence and efflorescence of small particles [McGraw and Lewis,

2009]. The fundamental equation takes the following form:

W n

kT

P n

P
dneq

ext

n( ) ln
( ' )

'=




∫0

(2.2)

where n is the actual (not volume equivalent) number of condensed solvent molecules

present in the particle, n'  is a dummy integration variable and W n( ) is the reversible

work required to condense n molecules from the surrounding external vapor at pressure

Pext . Derivation of Eq. 2.2 from the molecular-level kinetics of cluster evaporation and

growth using only the law of mass action and principle of detailed balance is given

elsewhere [McGraw and Lewis, 2009], but its content is motivated here for the special

case of classical homogeneous nucleation theory. The homogeneous nucleation barrier

profile is recovered for nseed = 0, in which case n g= . Then a similar equation to Eq. 2.2

but with Peq
∞  replacing Pext , in which case the integrand is simply the logarithm of the

saturation ratio along the Kelvin curve, gives the reversible work required to extrude a

drop from bulk liquid under saturated conditions – equal to the surface tension times the

surface area, A n( ), of the drop [Reiss, 1996]. The difference, − ( ) = −∞n P P n Sext eq extln / ln ,

where Sext  is the saturation ratio, is the reduced work gained by condensing n molecules
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of the (supersaturated) external vapor to bulk liquid prior to starting the extrusion

process. Adding these two contributions gives W n n S A next( ) ln ( )= − + σ , showing that

for this special case Eq. 2.2 yields the classical result.

Figure 1 illustrates area constructions for both homogeneous and heterogeneous

nucleation using water vapor at 200% relative humidity (RH) as an example.  For the

homogeneous case the reduced barrier height is:

W

kT
A Ahomo

*

= +1 2, (2.3)

which follows from Eq. 2.2 for the upper limit of integration set at n n g= =* * , the

intersection of the Kelvin curve (solid curve) and horizontal dashed line. The sub-areas,

also defined with respect to the Kelvin curve, are indicated in the figure and labeled with

a subscript to distinguish them from surface area. In the heterogeneous case, for seed

volume vseed , the integration in Eq. 2.1 is from n' = 0  ( g v vseed= / 1) to n* ( )*g g= ,

yielding the reduced barrier height

W

kT
Ahetero

*

= 1. (2.4)

A conceptual advantage of the new approach is that, in principle, it avoids the un-

natural separation into surface and bulk properties inherent in the capillarity drop model.

Thus if the true vapor pressure curve Peq  were somehow available, e.g. from a molecular

simulation of cluster evaporation rate, Eq. 2.2 would remain valid – the only

requirements being an ideal vapor mixture (an excellent approximation at near

atmospheric pressure conditions) and cluster condensation and evaporation rates that

satisfy detailed balance [McGraw and Lewis, 2009]. In absence of a sufficiently accurate

molecular-based approach we continue with the capillarity approximation, in which case
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the barriers from graphical construction reduce exactly to those derived conventionally

from classical nucleation theory.

Several well-known, capillarity-based, relations for the barrier height follow easily

from the graphical construction when the vapor pressure is given by the Kelvin relation.

Continuing with the homogeneous case we obtain the two equivalent results:

    W
g

P

P
A Aext

eq

homo
*

kT
=







= +∞

1
2

1
2 3 4

* ln ( ). (2.5a)

W A

kT
A A A Ahomo

*

kT
= = + + +1

3
1
3 1 2 3 4

*

( )σ (2.5b)

where A A g* *( )≡  is the surface area of the critical cluster. Equation 2.5a is important to

the scaling analysis of Sec. 5. The first equality of Eq. 2.5b can be traced to the work of

Gibbs [Gibbs, 1906]. The first area equality (Eq. 2.5a) follows trivially from the figure;

the second (Eq. 2.5b) follows the previous discussion of droplet extrusion. Full barrier

profiles for either heterogeneous or homogeneous ( nseed = 0) nucleation follow from Eq.

2.2 with limits of integration from nseed  to n nseed +  for variable n, where n is the number

of molecules of liquid condensate:

      W n

kT
A n n

P

P T
n n next

eq
seed seed

( ) ( ) ln ( ) [( ) )/ / /= = −






+ 



 + −∞1

1 3 2 3 2 336π Ω , (2.6)

in agreement with the classical result. Ω / T  is the previously defined physical constant

grouping appearing in parenthesis on the right hand side of Eq. 2.1. The function A n1( )

evaluated at the critical size n n= * equals A1 . Dividing the first and second terms on the

right hand side of Eq. 2.6 by the middle terms from Eqs. 2.5a and 2.5b, respectively,

gives the following working-fluid-independent result:
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W n
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/
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− −3 2 3 2
2 3

2 3 (2.7)

where f v g v n gseed seed= =/( ) /* *
1  is the ratio of seed volume to volume of the critical

particle.  At the critical condition

W

W

A

A A
f f

*
/

homo
* =

+
= − + +1

1 2

2 33 2 1. (2.8)

The homogeneous ( f = 0) limit of Eq. 2.7 was utilized previously [McGraw, 2001]. Here

the more general result shows that the barrier profiles for perfect wetting are

characterized by a universal one-parameter family of curves independent of the detailed

physio-chemical properties of the condensing fluid. These curves are shown in Fig. 2 for

several values of f.

For use in the following section we require the Zeldovich factor, which is a measure

of barrier curvature at the critical size [Abraham, 1974]:

Z
W kT

g

W kT

n
g n

= − 





 = − 





= −1
2

1
2 2

2

2

2

2π
∂

∂ π
∂

∂
γ
π

( / ) ( / )

* *

homo
*

hetero
*

(2.9)

The first equality is the definition of this quantity. The second equality shows that Z has

the same value for the homogeneous nucleation and perfect wetting heterogeneous

nucleation cases. This follows by inspection of the graphical construction and provides an

interpretation for the second partial derivatives as each equal to the slope, γ , of the

Kelvin curve at g*  (Fig.1). That the same Zeldovich factor applies in the two cases is

seen graphically as a simple consequence of the slopes being the same. Vehkamäki et al.

[2007] provide a convenient formula for evaluating Z for heterogeneous nucleation on

spherical particles under more general nonzero contact angle conditions. Using their

results we have shown (unpublished) that the same area and slope constructions for
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W kThetero
* /  and Z, respectively, apply as well in the more general case. Of course P neq ( )

depends on contact angle and only (discontinuously) reduces to the Kelvin curve for

perfect wetting. Evaluating the slope of the Kelvin curve gives:

Z
S

g T
Sext

ext= = 





−1
6

1
8

3 2
2

π π
ln (ln )*

/Ω   (2.10)

where in the second equality g*  has been eliminated in favor of ln ln( / )S P Pext ext eq≡ ∞ .

3. Mean first passage time (MFPT) kinetics and activation rate

Consider a collection of condensate free ( n = 0 ) seed particles, M, of initial vapor

phase concentration [ ]M N0 0= , uniform diameter dseed , and zero contact angle for

wetting by the working fluid. The subsequent uptake and exchange of molecules from the

working fluid, presence in the supersaturated vapor at concentration [ ]F nv1 = , is

described by the following sequence of condensation/evaporation steps:

  

M F MF

MF F MF

MF F MFn n

+ ↔
+ ↔

+ ↔ +

1 1

1 1 2

1 1

            M
. (3.1)

A similar kinetics applies to homogeneous nucleation on replacement of M  by F1.

Particles sufficiently large (e.g. twice the critical cluster size MFn*) are assumed far

enough into the growth-dominated regime so as to no longer be able to re-cross the

barrier to their pre-critical state at any reasonable rate. This is essentially the same

argument used to introduce the Szilard absorbing boundary condition in classical

nucleation theory [Abraham, 1974] and for the present application justifies the placement

of an imaginary model boundary distinguishing “un-activated” from “activated” particles.

Because the boundary is in effect absorbing (no-returns) the model activation rate equals
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the rate of first crossing, and the per particle activation rate (see below) equals the

reciprocal of the mean first passage time (MFPT), also defined below (see Eq. 3.5).

Model assumptions: We use an exponential decay kinetics that has previously been

applied to activation in supplementary online material by Winkler et al. [2008]:

dN

dt
J J Nhetero= − = − 1 . (3.2)

In the last equality particles are treated as independent to the extent that the steady state

nucleation rate, Jhetero  (number of particles activated per unit volume per second), is

proportional to the number concentration of remaining un-activated particles, N :

    J NJhetero = 1 (3.3)

where J1  is the per-particle crossing rate. During a short time interval dt, J dthetero

particles per unit volume are lost to activation. Combining these results gives

N t N e J t( ) ( )= −0 1 (3.4)

where N( )0  is the initial number concentration of seed particles and the exponent gives

the probability that any given particle remains un-activated at time t. Several assumptions

are implicit in the model that a direct calculation of the MPFT and comparison with

measurement can test. First, the assumption of steady state nucleation rate: Conditions

under which the quasi equilibration of pre-critical clusters and steady state nucleation are

reached on timescales short compared with the decay of N are evident in a calculation of

the MPFT as a function of boundary location. Second, the exponential decay model

requires random rather than deterministic activation – a property that can also be checked

through a study of the MPFT. Finally Eq. 3.2 assumes that just one seed particle is

present in the critical nucleus. This is easily tested experimentally using the nucleation

theorem (Eq. 4.13) below.
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Calculation of the mean first passage time : We classify un-activated (activated)

particles as those belonging to size class MFnmaxand smaller ( MFnmax +1 and larger) where

nmax = 2n* . Interest is primarily in the MFPT to reach MFnmax+1 so defined, but a study

for variable nmax, to show insensitivity to boundary placement at 2n*  and verify other

assumptions implicit in the exponential model, was also carried out. Let U be the domain

of un-activated particles such that MF Un ∈  for 0 ≤ ≤n nmax  and let P tU ( )  be the

probability that a seed that is condensate-free at t = 0 remains in the un-activated domain

at time t. Then the fraction of particles leaving U at time t is −dP t dtU ( ) / . By definition,

the MFPT is the mean time it takes to leave U, which is [Hänggi, et al., 1990]:

τ ≡ − =
∞ ∞

∫ ∫t
dP

dt
dt P t dtU

U0 0
( ) . (3.5)

The last equality follows an integration by parts. Evaluating the last integral for the

exponential decay model gives τ = 1 1/ J .

Benchmark calculations are based on the following formula for the MFPT [Hänggi

et al., 1990; Wedekind et al., 2007]:

          τ ( )
( ) /

( ) /nmax
nmax

=






−

==
∑∑ e

D
e

W j kT

j

W i kT

i

j

j

hetero

hetero

00

. (3.6)

The double summation is a discretized version of Eq. 2 of Wedekind et al. [2007].

Dummy indices i and j  refer to the number of condensate molecules in the seed-

condensate particle (the n in MFn ) and the summation begins with the initial seed, M

( n = 0 ).  Equation 3.6 describes the case of particles undergoing diffusion-drift along the

size coordinate, n, with reflecting and absorbing boundaries located at 0 and nmax + 1,

respectively. Dj  is the size-dependent diffusion coefficient along the growth coordinate,
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which is also equal to the collision rate of vapor molecules with a particle of size n j=

( g n jseed= + ) (McGraw, 2001):

D n
kT

m
r n j

P A j

m kTj v
v

seed
ext

v

= + =8
21

2 2 3π
π

( ) ( )/ . (3.7)

Here r1  is the vapor monomer radius corresponding to the molecular volume v1 , nv  is the

vapor number concentration, mv  is vapor molecular mass, and A j r n jseed( ) ( ) /= +4 1
2 2 3π  is

the surface area of the seed-condensate cluster for n j= . Direct evaluation of the double

summation of Eq. 3.6 provides the benchmark against which a new approximate

formulation for J1  will be tested and used to analyze the scaling properties of

heterogeneous particle activation rate in the following section.

4. A simple but accurate expression for mean first passage time and heterogeneous

nucleation rate

Figure 3 illustrates a typical distribution of the MFPTs required to exceed any

specified (seed plus condensate) particle size as a function of that size or, equivalently, as

a function of the upper limit, nmax, in the double summation of Eq. 3.6. The steep

inflection region centered at the critical size (region II) is indicative of wide separation of

time scales between the rapid quasi-equilibration of pre-critical particles (region I) and

the significantly slower barrier crossing. The figure also shows the MFPT to be

insensitive to nmax sufficiently beyond the critical particle size (region III). Henceforth

we set nmax = 2n* . In addition to separation along the time coordinate, there is a distinct

separation with respect to particle size: The overwhelming majority of rapidly

equilibrated pre-critical clusters tend to be significantly smaller than the critical particle

size and dominate the summation over i. On the other hand the summation over j is
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dominated by terms near the critical size. Accordingly, to good approximation the double

summation factors into to a product of two single-index summations. Specifically, the

size separation allows one to choose a value, imax, such that terms in the inner

summation having i > imax  may be neglected even though imax is still significantly

smaller than the critical size. Meanwhile the critical size so dominates the summation

over j that terms in the outer summation having j ≤ imax  may be neglected. Modifying

the ranges of the two indices to cover only non-neglected terms gives the expression to

the right of the approximate equality, below, and the factorization:

       
τ (2n*

imax

imax+

2n*

imax

2n* imax

)
( ) /

( ) /

( ) /
( ) /

= ≈







=

−

==

= +

−

=

∑∑

∑ ∑

1
1 01

1 0

J

e

D
e

e

D
e

W j kT

j

W i kT

ij

W j kT

jj

W i kT

i

hetero

hetero

hetero

hetero                     

.  (4.1)

A series of further approximations is now made to the factored expression: First Dj  is

approximated by its value at the critical size

D D n
kT

m
r n j

P A j

m kTj j v
v

seed
ext

v

≈ = + =*
/

*

( *) ( )8
21

2 2 3π
π

(4.2)

and factored out of the summation. Second, the remaining part of the summation over j is

approximated in the usual manner of nucleation theory by its maximum term multiplied

by the correction factor of Zeldovich to yield the intermediate result:

    τ ( )
*

( *) / ( ) /2n*
imax

= ≈ −

=
∑1 1 1

1 0J D Z
e e

j

W j kT W i kT

i

hetero hetero . (4.3)

The i th term of the last summation is a Boltzmann factor proportional to the quasi-

equilibrium number concentration of seed-condensate particles of size n i= . Thus the
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total number concentration of pre-critical particles is proportional to the summation itself.

Linearization of the reduced work about i = 0 gives

W i kT hihetero( ) / ≈ (4.4)

with slope:

h
T

n
P

P
S fseed

ext

eq
ext= 



 −







= −( )−

∞
−32

3
1

1 3
1 3 1 3π /

/ /( ) ln lnΩ (4.5)

wherein the first term on the right hand side derives from Eq. 2.1. Apart from a

dimensionless scaling factor W g kT Sexthomo
* */ ln /= 2 (Eq. 2.5), h is the initial slope of the

scaled, f-dependent barrier height shown in Fig. 2. Geometrically, h  is the length of the

solid vertical line segment separating regions A1  and A2  in Fig. 1. This ranges from a

very large value in the homogeneous nucleation limit ( nseed = 0; n = 1) to zero at the

critical size. Under the assumed condition that a suitable imax can be chosen such that the

quasi-equilibrium number concentration of particles beyond MFimax  is a negligible

fraction of the initial seed concentration, the summation appearing on the right hand side

of Eq. 4.3 can be further approximated as:

e e e
e

W i kT

i

hi

i

hi

i
h

hetero−

=

−

=

−

=

∞

−∑ ∑ ∑≈ ≈ =
−

( ) /

0 0 0

1
1

imax imax

(4.6)

where in the first approximate equality Eq. 4.4 has been used. Substitution into Eq. 4.3

gives our final form for the per-seed heterogeneous nucleation rate (units s−1)

J
P A j

m kT
e Zeext

v

h W kThetero

1
1

2
1= ≈ − − −

τ π
( ) ( )

*
/*

, (4.7)

and

J N
P A j

m kT
e Zehetero

ext

v

h W kThetero≈ − − −( ) ( )
*

/*

2
1

π
(4.8)
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for the total heterogeneous nucleation rate.

Equations 3.1 describe an associating vapor. For large slope ( h) the distribution of

precritical seed-condensate clusters is dominated by the n = 0  condensate-free seeds, M

and [ ]M N= . For the general case that association is present [ ] ( )M e Nh= − −1  and Eq.

4.8 becomes:

J M
P A j

m kT
Zehetero

ext

v

W kThetero≈ −[ ] ( )*
/*

2π
(4.9)

which is proportional to the concentration of the starting species – seeds without

condensate. The concentration of condensate-free seeds [ ]M , treated here as just another

molecular constituent of the vapor, is reduced below N by the association factor 1 − −e h,

and Jhetero  is correspondingly reduced. This is an example of the somewhat

counterintuitive effect that association has on increasing the stability of a metastable

vapor phase by suppression of the nucleation rate (Katz et al., 1966).

Homogeneous nucleation rate: At high enough saturation ratio, homogeneous

nucleation of the vapor itself will compete with heterogeneous nucleation and interfere

with particle detection - making the comparison of these two nucleation channels a

necessary consideration. The homogeneous nucleation rate is [Abraham, 1974]:

J n
P

P

P A g

m kT
Ze n

P A g

m kT
Zev

eq

ext

ext

v

W kT
v
eq ext

v

W kT
homo

homo homo=






=
∞

− −( ) ( )*
/

*
/* *

2 2π π
. (4.10)

As noted previously, Z has the same value here as in the heterogeneous case. The vapor

pressure ratio in parenthesis to the right of the first equality supplies the 1/ Sext  correction

due to Courtney (1961). It should be noted that Courtney’s correction, which derives

from the addition of a term kT P Pext eqln( / )∞  to the classical Whomo  in order to gain
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consistency with the law of mass action, does not apply to Whetero because the correction

cancels on taking free-energy differences relative to M when a seed is present. On shift

from negative exponent to kinetic prefactor, the Courtney correction amounts to the

additional factor of 1/ Sext  appearing in Eq. 4.10 for the homogeneous nucleation rate.

Testing the new rate expression: Figures 4 and 5 show the Kelvin curve together

with the calculated homogeneous nucleation threshold range from Eq. 4.10 (here shown

for rates within ±2  orders of magnitude of J cm shomo = − −1 3 1 ) and heterogeneous

nucleation threshold range from Eq. 4.7 (rates within ±2  orders of magnitude of

J s1 = −1 1).  The filled circles are from the full double summation for the MFPT for τ = 1s

(Eq. 3.6 with nmax = 2n* ) and should be compared with the approximate expression

(middle curve) for J s1
11= − . Agreement is excellent: to within about 5% in the case of

menthol and 2% for water.  The larger discrepancy for menthol is probably due to

discretization error as the number of molecules in the critical nucleus is considerable

smaller than in the case of water. Barrier heights are in the range 10 20− kT ; much lower

than for homogeneous nucleation where typical barrier heights range between 50 and 70

kT  (see below). Closer to the Kelvin limit, e.g. for barrier heights lower than about 5 kT,

the approximations used to derive the new analytic expression begin to fail and the full

double summation formula for the MFPT should be used instead. The exponential decay

model (Eq. 3.4) will also fail in this regime as activation begins to take on less the

character of a random barrier crossing process and more one of deterministic growth.

According to the 5 kT criterion the simplified expression for heterogeneous nucleation

rate can be used reliably for f ≤ 0 5.  (or d dseed Kelvin/  less than about 80%). This is the

predominant range of interest anyway as the general goal is to achieve selective detection
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of the smallest particles, which is favored by being close to the heterogeneous nucleation

threshold and well below the Kelvin limit. For f ≤ 0 5.  the association factor is typically

between 0.2 and 1 while 1/ Sext  typically exceeds 0.01.  In the context of nucleation such

corrections are oftentimes regarded as small but here they are needed to achieve the few

percent level of accuracy with reference to the MFPT benchmark we have described.

Nucleation theorems: Nucleation theorems give the relative sensitivity of nucleation

rate to saturation ratio, temperature, or other constraint [Kashchiev, 1982; McGraw and

Wu, 2003]. The following relations in terms of the log saturation ratio follow

immediately from the area construction (Fig. 1) on application of the fundamental

theorem of integral calculus to the areas A1  and A A1 2+ :

∂
∂

∂
∂

∂
∂

∂
∂

ln
ln

ln
ln

/
ln

( )
ln

* *J K W kT A
g n nhetero hetero

seedS S S Sext ext

hetero
*

ext ext

= − = − = + − = +1 1 11 (4.11)

∂
∂

∂
∂

∂
∂

∂
∂

ln
ln

ln
ln

/
ln

( )
ln

*J K W kT A A
ghomo

ext

homo

ext

homo
*

ext extS S S S
= − = − + = +1 11 2 . (4.12)

Partial derivatives are taken at constant temperature and Khetero and Khomo  are the

prefactors from Eqs. 4.8 and 4.10, respectively, for the heterogeneous and homogeneous

nucleation rate, each of which makes a contribution of unity to the relative sensitivity.

Evaluating instead the relative sensitivity with respect to seed concentration gives:

∂
∂
ln

ln
Jhetero

N
= 1 (4.13)

as expected from the one-seed-per-critical-nucleus assumption. More generally,

measurement of ∂ ∂ln / lnJhetero N  yields the number of seed particles present in the

critical nucleus. Another heterogeneous nucleation theorem that follows immediately
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from inspection of the area construction gives sensitivity of the log rate to changes in

seed particle size, nseed :

∂
∂

∂
∂

ln J A
hhetero

n nseed seed

≈ − =1 ( )h ≥ 0 . (4.14)

The approximate equality neglects a small contribution from the association term in the

kinetic prefactor. The requirement that h be non-negative is discussed in Sec. 6.

5. Fundamental limits to neutral particle detection

Maximizing detector sensitivity: Avoiding interference from homogeneous

nucleation requires that the homogeneous nucleation rate be less than or comparable to

the activation rate: J Jhomo hetero/ ≤ 1 or, from Eq. 3.3, J J N cmhomo 1/ ( )≤ −3 . Under typical

CPC measuring conditions N is the 10-1000 cm−3 range. Nucleation thresholds are

typically sharp, as illustrated for menthol and water in Figs. 4 and 5. The figures show

threshold bands, where the rates Jhomo ( )cm s− −3 1  and J1  ( )s−1  take on mid and extreme

values of 1, 10 2− , and 102 , and characteristically small intersection regions where the

ratio J Jhomo / 1  ranges from 10 4−  to 104 . Operation near the homogeneous nucleation

threshold, J cm shomo = − −1 3 1 ( ), which condition defines the critical saturation ratio Scr ,

maximizes detector sensitivity. The smallest particles will be detected under conditions

that are also close to the heterogeneous nucleation threshold, J cm shetero = − −1 3 1 ( ) where

the above inequalities are satisfied but not overly so. These conditions are now used to

establish fundamental size and concentration limits to neutral particle detection.

Signal to noise ratio perspective: Taking nucleation rates from Eqs. 4.8 and 4.10,

the preceding criterion becomes:
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The second equality uses the fact that the surface area ratio is unity. As before

f n gseed= / * and A2 , the area under the Kelvin curve referenced in Fig. 1, has been

evaluated in the last equality using Eq. 2.8. In the approximate equality we neglect the

inverse association factor, which as noted previously is typically close to unity and much

less important to the subsequent discussion than nv
eq , A2 , or N.  The expression to the

right of the approximate equality has an especially transparent interpretation in terms of

signal to noise ratio: For steady state homogeneous nucleation the constrained

equilibrium concentration of clusters of size nseed  is given by n ev
eq A− 2 , where A2  is the

reversible work required to assemble a pre-critical cluster of this size from vapor in the

capillary drop model. (That the concentration of vapor in equilibrium with bulk liquid nv
eq

appears, rather than the actual supersaturated vapor concentration nv , follows Courtney

[1961]). Although these precritical clusters arise from thermal fluctuations in the vapor,

they have the same probability to subsequently grow to critical size and contribute to

homogeneous nucleation rate that the permanent perfect wetting seeds have of

contributing to heterogeneous nucleation rate. Whenever the two concentrations are

equal, the homogeneous and heterogeneous nucleation rates will also be the same. The

expression to the right of the approximate equality is simply this ratio of concentrations:

fluctuating clusters of seed size (thermal noise) to actual seeds N (signal). Viewed from

this perspective the ratio n e Nv
eq A− 2 /  should normally be maintained less than unity, and
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its inverse, the signal to noise ratio (SNR), greater than unity in order that the

concentration of homogeneously formed clusters not exceed the concentration of seeds.

(One can conceive of tricks to work with lower SNRs, like modulating the seed

concentration, but such considerations are beyond the scope of the present study). Figure

6 shows curves of constant SNR = 1 (equivalently curves for which N n ev
eq A= − 2 ) for n-

butanol at two different temperatures and three different nucleation rates obtained by

varying Sext . Detection at smaller size is seen to be favored by higher N, lower T, and

lower Sext .

Scaling and minimum detection size: Because the working fluid enters only through

its equilibrium vapor pressure and non-dimensional homogeneous nucleation parameters,

corresponding states scaling ideas previously developed to correlate the homogeneous

nucleation thresholds of supersaturated vapors [McGraw, 1981; Rasmussen and Babu,

1984; Hale, 1992] can be used here. The power of scaling is illustrated through its

application to a selection of four widely different working fluids for which homogeneous

nucleation measurements are available (Fig. 7 and Table 1). Each of the material-

characteristic points in Fig. 7 lies at the intersection of several important curves: the

hyperbola of constant homogeneous nucleation barrier height (Eq. 2.5a), the Kelvin

curve, which depends on the scaling parameter Ω / T , and the horizontal and vertical lines

marking ln Scr  and g* , respectively. To avoid crowding the figure, while sufficing to

illustrate the method, the full set of intersecting curves is drawn only for nonane. The

parameters needed to construct similar curves for each of the other materials are provided

in the table. Homogeneous nucleation barrier heights for many substances tend to be in
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the 50 70kT kT−  range bounded by the dashed hyperbolic curves [McGraw, 1981], as

illustrated in the figure.

The maximum sensitivity condition for each working fluid lies close to the critical

saturation ratio, indicated in Fig. 7 for nonane by the horizontal dotted line. The threshold

values of first row of Table 1 were obtained from Eq. 4.10 by adjusting Sext  to have

Jhomo = 1. Thus the minimum detection size lies close to the ln( )Scr  line, between 0 and

g* , and close to the heterogeneous nucleation threshold. Its location is obtained by

solving the equality limit of Eq. 5.1 (here with seed concentration N cm= −1 3 ) for

f n gseed
min min≡ / * . The result is marked by the caret in Fig. 7 for nonane and provided for

the other materials in row 7 of the table. Near constancy of this ratio for the different

working fluids suggests its value as an important heterogeneous nucleation scaling

parameter. Using molecular volumes, obtained from the bulk liquid density (row 10), to

covert nseed
min  to a spherical mass-equivalent volume gives the minimum detectable seed

particle diameters shown in the last row of the table. The entries for menthol and water

match particle diameters near the centers of the threshold intersection regions shown in

Figs. 4 and 5. The smallest diameter of the set, at 1.14 nm, is found for water even though

its scaling parameters are very close to those of n-butanol at 300K, which has the second

highest minimum detection diameter at 1.96 nm. The molecular based nseed
min  values are

close for water and n-butanol, so the main difference lies in the significantly smaller

molecular volume of water. Comparing water and menthol we see that the latter has the

highest Ω / T  (row 3), which gives it the smallest g*  (row 4). Here again water wins out

for having the smaller detection diameter due to its factor of eight smaller molecular

volume.
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The scaling parameter Ω / T  contains T implicitly in Ω  and explicitly in 1/ T. A

useful approximate form for the temperature dependence of Ω / T  has been obtained by

Hale [1992] for surface tensions approximated by a linear form, σ σ= −0 ( )T Tc , where

Tc  is the critical temperature. Neglecting a small temperature dependence in density gives

Ω Ω/ ( / )T T TH c≈ − 1 , with ΩH v k≡ σ 0 1
2 3/ / . Temperatures dependence is exhibited in

Fig. 7 for the case of n-butanol at 10-degree intervals from 250 to 320 K by the triangles

positioned from left to right, respectively.

Nucleation and growth as a detection tool: The preceding discussion examined the

case that N cm≈ −1 3  and applies to the detection of seed particles (or large molecular

impurities) of volume n vseed
min

1  present in the vapor at concentrations of order 1 3 cm− . The

question naturally arises as to whether or not it is possible to detect still smaller particles

and even single neutral molecules this way. According to Eq. 5.1, and Fig. 6, the

detection of molecule “impurities” comparable in size to the molecular volume of the

working fluid requires their presence at the much higher concentration N nv
eq≈ .

Intermediate sizes require intermediate seed concentrations N  (Fig. 6). Efficiency of

particle detection is defined as:

ε τ τ= − = − −1
0

1 1
N

N
e J( )

( )
(5.2)

where N( )τ  is the concentration of unactivated particles leaving the CPC after residence

time τ . A typical CPC residence time of τ = 0 1. s , and J cm s1
3 11= − − , gives ε = 0 1. ,

which is the detection efficiency at the minimum detectable particle sizes reported in

Table 1.  Efficiency is a metric that doesn’t include noise and ε  will vary widely along

the SNR = 1 curves of Fig. 6. Thus, having N cm= −100 3  gives a noticeably smaller
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detection limit than having N = 1 at the same SNR.  For comparable residence times, the

smaller particles will be detectable at only 1% of the efficiency for detection at the size

limits reported in Table 1, which are all based on having N cm= −1 3 .

Evidence for the detection of critical nuclei containing just one organic molecule

comes from laboratory measurements on the ternary p-toluic acid/sulfuric acid/water

[Zhang et al., 2004] and cis-pinonic acid/sulfuric acid/water [Zhang et al., 2009] systems

and their interpretation using the nucleation theorem [McGraw and Zhang, 2008]. In both

cases the concentration of the organic acid present in the vapor was of order 1010 3 cm− -

far in excess of unity, and comparable to the sulfuric acid vapor concentration. For a

nucleation rate of 103 3 1cm s− −  this implies a detection frequency for the organic acid in the

10 8−  range. Noise arises due to binary homogeneous nucleation in the background

sulfuric acid/water vapor mixture. Analysis of ternary to binary nucleation rate ratios in

the p-toluic acid/sulfuric acid/water system [Fig. 4 of McGraw and Zhang, 2008] gives

SNRs for detection of p-toluic acid in the 5-10 range.

In their investigations of nucleation and growth as a detection tool Reiss et al.

[1977] conclude, “ it is unlikely, however, that single neutral molecules can be detected

[referring to detection using a diffusion cloud chamber], although the possibility remains

for detecting individual polymer molecules of a substantial degree of polymerization”.

Elsewhere in their paper these authors state, “even though theory shows that one cannot

detect a single impurity molecule, it shows that there may be cases in which a nucleus

contains only a single [such] molecule. But this is not the same as having every impurity

molecule serve as a nucleus”. These findings are consistent with the results obtained here.

The following section presents a preliminary analysis showing that the graphical method
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can be used to incorporate departures from the Kelvin relation from interactions at the

molecular scale.

6. Incorporating departure from the Kelvin relation

An important tool for direct testing of the Kelvin relation for small droplets became

available with the ability to measure nucleation rates (as opposed to earlier measurements

that yielded only nucleation threshold conditions). Strey et al. [1994] performed such a

test using homogeneous nucleation rate measurements in conjunction with the nucleation

theorem to give a determination of critical cluster size for n-butanol.  The Kelvin relation

sufficed to predict cluster sizes down to as few as 40 molecules an equivalent radius of

curvature of 1 nm. Similar studies for water showed agreement down to about 30

molecules or about 0.6 nm radius of curvature [ Wölk and Strey, 2001]. One concludes

from these studies that even though the Kelvin relation relies on macroscopic surface

tension and density to predict the vapor pressures of small drops, it tends to work

surprisingly well.

A seemingly common case in homogeneous nucleation occurs when the Kelvin

relation works well for clusters of critical size but fails for smaller ones. This situation is

depicted schematically in Fig. 8 by the dotted vapor pressure curve [ ( )]P P g= 1  for the

case of attractive interactions that lower the vapor pressures of very small clusters

relative to the Kelvin curve. The integrated area between P g1( )  and the dashed line at

ln Sext  equals the corrected reduced barrier height for homogeneous nucleation, which in

this case is lower by κ from the prediction of classical nucleation theory (CNT) based on

the Kelvin curve

κ = [ ]∫ ln ( ) / ( )
*

P g P g dgeq

g

10
. (6.1)
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In spite of this barrier lowering, g*  and barrier curvature near g*  are the same as in CNT

because the location and slope at the crossing point of P1 with ln Sext  remains the same.

Thus the effect of κ  is to cause a uniform vertical shift in the barrier relative to CNT,

resulting in either a lower (the case depicted here for κ > 0) or higher ( κ < 0) barrier

height: W W CNT kThomo
*

homo
*− = −( ) κ . The experimental signature of this effect, in accord

with the nucleation theorem, is a vertical shift (also by κ ) in curves of ln Jhomo  versus

ln Sext , as is commonly seen in rate measurements [e.g. Strey et al., 1994; Wölk and

Strey, 2001]. This effect has been studied using molecular-based theory [McGraw and

Laaksonen, 1996] but the present graphical approach makes it more transparent. For the

case of n-butanol the experimental rate exceeds the CNT prediction by about a factor of

10 [Strey et al. 1994] yielding κ ≈ −2 3. For water the observed shifts (and

corresponding values of κ ) are smaller and undergo a change in sign at about 240K

[Wölk and Strey, 2001].

Substrate-working fluid interactions: Molecular scale interactions between a

particle surface and the working fluid can also result in departure from the Kelvin

relation. Such interactions are not easily incorporated into macroscopic properties such as

the contact angles and line tensions used by CNT. Evidence for strong surface effects that

seem to defy a classical description is seen in recent measurements comparing

nanometer-sized particles of Ag and NaCl. These substances show very different

activation efficiency and, in the case of NaCl, unusual temperature dependence

[Schobesberger et al., 2010]. While not complete without a detailed picture of the

interactions in question, the graphical method provides a molecular framework for

generalization of CNT based on deviations in vapor pressure (positive or negative)
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relative to the Kelvin pressure. Figure 8 illustrates the case that departures from classical

homogeneous nucleation theory are due to interactions that take place within clusters

smaller than the seed, in which case P g P geq1( ) ( )≈  for g nseed≥  and only the interactions

between seed and working fluid cause departure from the classical heterogeneous

nucleation theory for perfect wetting. The effect on vapor pressure is depicted by the

dashed curve [ ( )]P P g= 2  in Fig. 8 for the case of attractive interactions and a vapor

pressure lowering near the seed surface. The reduction in h suggested in the figure might

possibly be inferred through measurements of the relative sensitivity of heterogeneous

nucleation rate to seed size using the nucleation theorem of Eq. 4.14. Note, however, that

whenever the vapor pressure at nseed  falls below Pext , h becomes negative. Familiar

examples occur in Thompson theory, for charged particles, and in Kohler theory for

soluble nuclei. In such cases Eq. 4.14 predicts a relative sensitivity of zero as the particle

undergoes spontaneous growth until achieving stable equilibrium at Pext . Considering

only positive h, the integrated effect of vapor-pressure-lowering interactions is to cause a

shift in the heterogeneous nucleation barrier height: W W CNT kThetero
*

hetero
*− = −( ) δ , where

CNT in parenthesis refers not only to classical nucleation theory but also to perfect

wetting. δ  is the area indicated in Fig. 8:

δ =
=∫ ln[ ( ) / ( )]
*

P g P g dg
g n

g

seed
1 2 . (6.2)

The  κ - and δ -type molecular interactions (Eqs. 6.1 and 6.2) result in modification

of Eq. 5.1:

J n

N
e ev

eq
Ahomo

heteroJ
≈ ≤− −2 1( )κ δ . (6.3)
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The methods use to analyze Eq. 5.1 are readily carried over to Eq. 6.3. Positive values of

δ κ−  allow for detection of smaller particles. Because measurements suggest that κ  is

typically quite small (i.e., several kT), almost any kind of molecular bonding between the

substrate and working fluid should allow for the detection of smaller particles than

predicted by Eq. 5.1. The opposite tendency, requiring a larger particle sizes for the same

detection efficiency, follows for repulsive interactions ( δ < 0) - including interactions of

the type that manifest macroscopically as cases of imperfect wetting.

The results in this section show both qualitatively and quantitatively how

molecular interactions that lower (elevate) vapor pressure cause enhancement (reduction)

of nucleation rate. For the ternary organic acid/sulfuric acid/water systems discussed in

Sec. 5, recent quantum chemical calculations point to strong organic acid–sulfuric acid

hydrogen bonding as responsible for stabilization of the critical complex and

enhancement of the nucleation rate seen in laboratory measurements [Zhao et al., 2009].

7. Summary and discussion

In this paper we presented theory and a graphical method for analysis of

homogeneous and heterogeneous nucleation barriers. The results reproduce classical

nucleation theory for the case that droplet vapor pressure follows the Kelvin relation

while allowing interactions at the molecular scale that cause deviations in vapor pressure

from the Kelvin result to be formally included. Several nucleation theorems were shown

to follow immediately from the graphical method as does the Zeldovich factor, here

related to the slope of the Kelvin curve at the critical nucleus size, that appears in

expressions for homogeneous and heterogeneous nucleation rate.
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Calculations based on mean first passage time kinetics were carried out and used as

the benchmark to develop and test a new simplified expression for the MFPT and

heterogeneous nucleation rate. Including (or not including in the case of heterogeneous

nucleation) Courtney’s 1/S correction and allowing for particle-vapor association at pre-

critical levels of condensate yielded accuracies of a few percent when compared with the

MFPT results.

  Criteria for guiding the selection of working fluids and operating conditions in

order to optimize neutral particle detection were derived from a consideration of

detection efficiency and a new metric for assessing heterogeneous nucleation – signal to

noise ratio. Corresponding states correlations, previously developed in the context of

homogeneous nucleation theory, were show to be applicable to heterogeneous nucleation

and used to identify key scaling parameters and obtain results in universal (material

independent) form. Detection at minimal seed to molecular volume ratio, v v nseed seed/ 1 = min

was shown to be favored for larger values of Ω / T , lower vapor concentration, nv
eq , and

molecular-level particle-working fluid interactions that lower vapor pressure relative to

the Kelvin curve. In the latter case, to the extent these interactions (e.g. hydrogen bonding

interactions) are favored and characteristically paired (e.g. antigen-antibody interactions),

highly selective methods for nanoparticle detection based on nucleation and growth

should result. Future research should include extending the graphical method (or

equivalent) to multi-component working fluids, more complete development of

molecular-based approaches to nucleation theory using these methods, and theory and

experiment aimed at elucidating temperature dependence.
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Property l-menthol n-nonane n-butanol water
Scr 111.5 7.41 3.11 3.20
T(K) 323.15 300 300 298.15
Ω / T 4.19 2.40 1.64 1.69
g* 23.6 57.8 101.6 102.2
W kThomo

* / 55.5 57.9 57.7 59.5
n cmv

eq ( )−3 1 19 1016. × 1 57 1017. × 2 58 1017. × 7 69 1017. ×
f Nmiin( )= 1 0.230 0.244 0.254 0.251
h f( )min 2.98 1.20 0.66 0.68
nseed

min 5.4 14.1 25.8 25.7
v cm1

3( ) 2 38 10 22. × − 2 99 10 22. × − 1 53 10 22. × − 3 00 10 23. × −

d nmseed
min ( ) 1.35 2.00 1.96 1.14

Table 1. Parameters and scaling properties for the four working fluids included in Fig. 7

and the theoretical minimum particle size ( dseed
min ) that can be detected by each for

N cm= −1 3. Data sources: l-menthol, Becker and Reiss (1978); n-nonane, Rudek et al.

(1996); n-butanol, Magnusson et al. (2003); water: Wölk and Strey (2001).
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Figure 1. Area constructions derived from the Kelvin curve. Solid curve is the Kelvin

curve for water from Eq. 2.1. Horizontal dashed line is for a water vapor saturation ratio

of 2 (relative humidity = 200%). The point of intersection marks the critical drop size,

g * consisting of the seed particle plus n g v vseed* * /= − 1 molecules of condensed water.

See text for interpretation of labeled areas A A1 4− .
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Figure 2. Scaled nucleation barrier profiles from Eq. 2.7 for several seed volume fractions

( f n gseed= / *). Curves top to bottom: homogeneous nucleation case ( f = 0), an

intermediate heterogeneous nucleation case ( f = 0 25. ), and the Kelvin limit ( f = 1).
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Figure 3. Typical behavior of the mean first passage time (MFPT) to reach a given cluster

size as a function of that size. n is the number of molecules condensed onto the seed.

Region I, quasi-equilibrium between clusters of pre-critical size. Region II, inflection

point at the critical size. Region III, rapid growth regime. Calculations are for

heterogeneous nucleation of l-menthol on a 1.5nm diameter seed. Sext = 86 0. ,

W kT* / .= 18 1, J1 1= .
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Figure 4. Nucleation rates for menthol. Solid curve is the Kelvin limit. Dashed lines and

curves are contours of constant nucleation rate. Horizontal lines: contours of constant

homogeneous nucleation rate for, top to bottom, Jhomo =  100, 1, and 0.01 cm s− −3 1.

Dashed curves give similar contours for the heterogeneous nucleation rate from the new

approximate prefactor-exponent form: top to bottom, Jhomo =  100, 1, and 0.01 cm -3s-1.

Markers: results from the double summation calculation for mean first passage time and

J1 =  1 cm s− −3 1. These show excellent agreement with the approximate result (middle

curve).
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Figure 5. Nucleation rates for water. Solid curve is the Kelvin limit. Dashed lines and

curves are contours of constant nucleation rate. Horizontal lines: contours of constant

homogeneous nucleation rate for, top to bottom, Jhomo = 100, 1, and 0.01 cm s− −3 1. Dashed

curves give similar contours for the heterogeneous nucleation rate from the new

approximate prefactor-exponent form: top to bottom, J1 =  100, 1, and 0.01 cm s− −3 1.

Markers: results from the double summation calculation for mean first passage time and

J1 =  1 cm s− −3 1. These show excellent agreement with the approximate result (middle

curve).
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Figure 6. Curves of equal heterogeneous and homogeneous nucleation rates ( )SNR = 1

for n-butanol.  Logarithm of n ev
eq A− 2  or N (these are equal along these curves) versus seed

diameter (nm). Solid curves: T K= 300 ; top to bottom J Sext= =10 3 676  ( . ),

1 3 11 (Sext = . ),   (10 2 786− =Sext . ). Dashed curves: T K= 320 , top to bottom

J Sext= =10 2 876  ( . ),  1 2 56 (Sext = . ),    (10 2 316− =Sext . ) . Results are shown for

d dseed Kelvin/ .< 0 8 beyond which the barrier height is lower than 5kT . Signal-to-noise

ratios for a given set of conditions exceed (are less than) unity to the right and above (left

and below) the corresponding curve. Horizontal lines: typical range for N

( = − −10 101 3 3cm ) in CPC measurements.
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Figure 7. Scaled nucleation rate. Dashed hyperbolic curves: contours of constant

homogeneous nucleation barrier height, 50 kT (lower curve) and 70 kT (upper curve).

The region between these curves provides a good indication of homogeneous nucleation

threshold range for most substances. Markers show four candidate working fluids and are

centered on critical cluster size and the critical saturation ratio, which for each fluid gives

Jhomo = 1. Error bars show a four order of magnitude range in nucleation rate from

Jhomo = 0 01.  to 100. No error bar means that the height of the symbol itself exceeds this

range. The solid curve is the Kelvin curve for nonane ( Ω / .T = 2 40 at T K= 300 ). The

horizontal and vertical dotted lines for nonane mark the logarithm of its critical saturation

ratio ln( )Scr  and g* , respectively. The area of the rectangle bounded by these lines and

the axes is twice the reduced barrier height, W kThomo
* / . The caret marks the N = 1

detection limit for nonane.
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Figure 8. Area construction similar to Fig. 1 but illustrating the effect of interactions that

lower the equilibrium vapor pressure relative to the Kelvin curve (solid curve). The

dotted curve, which only departs from Kelvin at the smallest cluster sizes, results in a

lowering of the barrier height for homogeneous nucleation to A A1 2+ −κ . The dashed

curve shows lowering of the heterogeneous barrier from A1  to A1 − δ . h  is the length of

the vertical line segment given by Eq. 4.5. Note that the abscissa (upper scale) has been

shifted in the heterogeneous case to tally only the number of molecules of condensed

working fluid. The lower scale, which runs out to g*  applies to the homogeneous case.
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